

FermiCloud Group, Fermilab

Technical Report
for work during summer

Siyuan Ma

8/4/2012

Table of Contents
I. Summary ... 2

II. Customize Gratia-Web .. 3

1. GraphTool and Cherrypy ... 3

2. Gratia-Web Source Structure .. 3

3. Add a customized graph under Bar Graphs section.. 4

4. Add a new database connection ... 5

III. Reinforce Gratia-Web with interactive charts .. 8

IV. Feed Nagios with Gratia RSV Metrics ... 9

1. Install RSV .. 10

2. Install Nagios ... 10

3. Configure RSV Host for Nagios .. 10

4. Configure Nagios Host to receive RSV Records .. 11

V. Automated Software Deployment on FermiCloud ... 13

1. onecluster ... 13

2. one${Type}Cluster ... 14

3. Utilities .. 14

4. Future Work .. 15

VI. Acknowledgement .. 15

I. Summary
My work during summer mainly involves three projects: Gratia-Web, Nagios, and OpenNebula. The

latter is the framework for FermiCloud; Gratia-Web is an OSG(Open Science Grid) project for system

monitoring and metrics visualization; Nagios is another widely used monitoring system that gains a

considerable popularity in industry. My efforts target at improving and integrating these three systems

to simplify the management and use of FermiCloud. These works can be further categorized into four

parts:

1. Customize Gratia-Web for the use cases of FermiCloud

2. Integrate interactive charting into Gratia-Web

3. Connect Gratia and Nagios (both latest version)

4. Automated software deployment on FermiCloud

The rest of this report details the content of each work.

II. Customize Gratia-Web
gratia-web is a package developed upon GraphTool to visualize database for monitoring in OSG projects.

By modifying xml configure files, gratia-web is able to

• Connect to specific databases

• Choose figure type (bar, stackedbar, …) which is supported by matplotlib

• Write SQL for each figure

Below a short introduction on GraphTool and cherrypy is given first. Then I brief the source code

structure and installation for gratia-web. Two customization are elaborated at the end of this post.

1. GraphTool and Cherrypy

To some extent, gratia-web is a customized GraphTool, which implements all the core functions

used in gratia-web. These functions include

• A XML-based configuration system for ORM(object relational mapping) , dynamic object, and

SQL query

• wrappers of matplotlib functions to generate various graphs

• A embedded webserver using cherrypy that presents UI to take SQL arguments from browser

and display the corresponding figure

As a light weight python web framework, cherrypy contains an out-of-box WSGI webserver which

provides 1. tree-structure url – object method mapping 2. flexible plugin system to extend its own

capability 3. a dictionary-based configuration system to enable easy configuration sharing and

modification.

Imaging all urls form a tree with / as the root, we can mount an object to the leaf node of the tree by

My application

app = myApp()

Mount the application so that CherryPy can serve it

cherrypy.tree.mount(app, '/myApp', os.path.join(self.conf_path, "app.conf"))

So if the myApp python class has a exposed method callme, it can be accessed through the address

http://ip:port/myApp/callme

For configuration and plugin system, please read the cherrypy tutorial.

2. Gratia-Web Source Structure
The table below gives a brief description for each subdirectory in the source code folder.

templates/ Use Cheetah as the template language to generate web pages

graphs/ Import GraphTool package to produce figures

database/ Import graphtool.database to connect and to query databases

gip/, voms/ Related to virtual organizations

services/ Define resources like Compute Element, Storage Element and

Subcluster

common/,

passct/,

summary/

Related to probes

web/, tools/ Related to the webserver, and objects mapped from url

As introduced in previous section, the cherrypy webserver maps an url to a python class method. In

gratia-web, there are two types of such python methods.

Static Method is hard-coded in python. One example is http://ip:port/gratia/d0, which is mapped to d0()

method exposed in web/__init__.py.

Dynamic Method The strength of gratia-web (or GraphTool) lies in its XML-based configuration system.

And one important capability of this system is to convert xml configuration to python objects on the fly.

One example is query_xml object. It is first mounted to gratia/xml in config/website.xml. The object

itself is defined in config/test_queries.xml as a XmlGenerator class. The query_xml object in turn

contains a set of query objects (e.g. GratiaBarQueries). Therefore, All the urls under

http://ip:port/gratia/xml are mapped to dynamic methods.

3. Add a customized graph under Bar Graphs section

Now we will try to add a new query osg_sharing_vos_customized in page http://ip:port/gratia/xml.

Insert below code snippet into config/gratia_bar_queries.xml

<query name="osg_sharing_vos_customized" base="GratiaGenericQuery.master_summary">

 <inputs>

 <input name="span" type="int" kind="sql">86400</input>

 <input name="starttime" partial="down" type="datetime" kind="sql">2012-05-22

00:00:00</input>

 <input name="endtime" partial="up" type="datetime" kind="sql">2012-06-04 23:59:59</input>

 <input name="includeFailed" kind="sql"> true </input>

 <input name="includeSuccess" kind="sql"> true </input>

 <input name="facility" kind="sql"> .* </input>

 <input name="probe" kind="sql"> .* </input>

 <input name="user" kind="sql"> .* </input>

 <input name="vo" kind="sql"> .* </input>

 <input name="role" kind="sql"> .* </input>

 <input name="exclude-role" kind="sql"> NONE </input>

 <input name="exclude-vo" kind="sql"> unknown|other </input>

 <input name="exclude-user" kind="sql"> NONE </input>

 <input name="exclude-facility" kind="sql"> NONE|Generic|Obsolete </input>

 <input name="resource-type" kind="sql"> ONEVM.* </input>

 </inputs>

 <sql>

 <filler name="group"> VO.VOName, S.SiteName </filler>

 <filler name="column"> sum(Cores*WallDuration)/3600 </filler>

 <filler name="where"> AND WallDuration > 0 </filler>

 </sql>

 <attribute name="pivot_name">Usage Type</attribute>

 <attribute name="title">Opportunistic Wall Hours by VO (Customized)</attribute>

 <attribute name="graph_type">GratiaStackedBar</attribute>

 <results module="gratia.database.query_handler" function="opportunistic_usage_parser5">

 <inputs>

 <input name="grouping_transform">make_int</input>

 <input name="pivots"> 0,1 </input>

 <input name="grouping"> 2 </input>

 <input name="results"> 3 </input>

 </inputs>

 </results>

</query>

The name attribute of query element will appear as part of the url for the new entry, which

is gratia/xml/$name. The base attribute indicates where the query template is defined. GraphTool will

merge the content in our query element and what in the query template. We can also customize the

SQL query within the input element, which equals the query string generated by filling the query form

on webpage. The title attribute element will appear as the new entry’s name in gratia/xml. More tag

and attribute usage can be found in GraphTool Advanced Tutorial.

After editing the xml, reboot the gratia-web server

sudo /etc/init.d/GratiaWeb restart

The new entry osg_sharing_vos_customized will appear after refreshing the web page.

4. Add a new database connection

1. Add the new database connection in /etc/DBParam.xml under the gratia ConnectionManager

<connection name="gratia-psacct">

 <attribute name="Interface"> MySQL </attribute>

 <attribute name="Database"> gratia_psacct </attribute>

 <attribute name="Host"> gr-fnal-mysql-collector.fnal.gov </attribute>

 <attribute name="Port">0000</attribute>

 <attribute name="AuthDBUsername"> zzzzz </attribute>

 <attribute name="AuthDBPassword"> zzzzz </attribute>

</connection>

2. Since database connections are attached to SqlQueries objects. We can create a new SqlQueries

object in config/gratia_customized_queries.xml

<graphtool-config>

 <import module="gratia.config" data_file="generic_queries.xml" />

 <class type="SqlQueries" name="GratiaCustomizedQueries">

 <attribute name="display_name"> Customized Graphs </attribute>

 <attribute name="connection_manager"> GratiaConnMan </attribute>

 <aggregate>

 <connection> gratia-psacct </connection>

 </aggregate>

 <query name="osg_sharing_vos_customized_psacct" base="GratiaGenericQuery.master_summary">

 <inputs>

 <input name="span" type="int" kind="sql">86400</input>

 <input name="starttime" partial="down" type="datetime" kind="sql">2012-05-22

00:00:00</input>

 <input name="endtime" partial="up" type="datetime" kind="sql">2012-06-04

23:59:59</input>

 <input name="includeFailed" kind="sql"> true </input>

 <input name="includeSuccess" kind="sql"> true </input>

 <input name="facility" kind="sql"> FermiCloud|OpenNebula </input>

 <input name="probe" kind="sql"> .* </input>

 <input name="user" kind="sql"> .* </input>

 <input name="vo" kind="sql"> .* </input>

 <input name="role" kind="sql"> .* </input>

 <input name="exclude-role" kind="sql"> NONE </input>

 <input name="exclude-vo" kind="sql"> unknown|other </input>

 <input name="exclude-user" kind="sql"> NONE </input>

 <input name="exclude-facility" kind="sql"> NONE|Generic|Obsolete </input>

 <input name="resource-type" kind="sql"> RawCPU </input>

 </inputs>

 <sql>

 <filler name="group"> VO.VOName, S.SiteName </filler>

 <filler name="column"> sum(Cores*WallDuration)/3600 </filler>

 <filler name="where"> AND WallDuration > 0 </filler>

 </sql>

 <attribute name="pivot_name">Usage Type</attribute>

 <attribute name="title">Opportunistic Wall Hours by VO (Customized)</attribute>

 <attribute name="graph_type">GratiaStackedBar</attribute>

 <results module="gratia.database.query_handler" function="opportunistic_usage_parser5">

 <inputs>

 <input name="grouping_transform">make_int</input>

 <input name="pivots"> 0,1 </input>

 <input name="grouping"> 2 </input>

 <input name="results"> 3 </input>

 </inputs>

 </results>

 </query>

 </class>

</graphtool-config>

The new connection is specified in the connection element.

3. Edit config/text_queries.xml to display this object as a new section in /grati/xml

......

<import module="gratia.config" data_file="gratia_customized_queries.xml" />

......

<class type="XmlGenerator" name="query_xml">

 <attribute name="timeout">900</attribute>

 <queryobj> GratiaStatusQueries </queryobj>

 <queryobj> GratiaEventsQueries </queryobj>

 <queryobj> GratiaDataQueries </queryobj>

 <queryobj> GratiaPieQueries </queryobj>

 <queryobj> GratiaGlideinBarQueries </queryobj>

 <queryobj> GratiaCustomizedQueries </queryobj>

 <queryobj> GratiaBarQueries </queryobj>

 <queryobj> GratiaRTQueries </queryobj>

 <queryobj> GratiaTransferQueries </queryobj>

 <queryobj> GratiaCumulativeQueries </queryobj>

 <queryobj> GridScanQueries </queryobj>

 <queryobj> GIPQueries </queryobj>

 <queryobj> RSVQueries </queryobj>

 <queryobj> RSVWLCGQueries </queryobj>

 <queryobj> RSVSummaryQueries </queryobj>

</class>

4. Edit config/gratia_graphs.xml to associate the SqlQueries object with a grapher

......

<import module="gratia.config" data_file="gratia_customized_queries.xml" />

......

<class type="Grapher" name="gratia_customized_grapher">

 <attribute name="display_name"> Customized Graphs </attribute>

 <queryobj> GratiaCustomizedQueries </queryobj>

</class>

5. Mount the new grapher in config/website.xml

<class name="web" type="WebHost">

 <mount location="/gratia/bar_graphs" content="image/png"> <instance name="gratia_bar_grapher" />

</mount>

 <mount location="/gratia/customized_graphs" content="image/png"> <instance

name="gratia_customized_grapher" /> </mount>

 <instance name="static" location="/gratia/static" />

 <config module="gratia.config">prod.conf</config>

 <instance name="GratiaWeb" location="/gratia"/>

</class>

6. At last, reboot the server and refresh the /gratia/xml page.

III. Reinforce Gratia-Web with interactive charts
As mentioned before, Gratia-Web connects to database for site info and visualize fetched metrics with

matplotlib. Figure below gives a typical result of database query generated by Gratia-Web.

Such static graphs generated by Gratia-Web have two major drawbacks. One is the shortage of features.

Basic features like Tooltip still require the support of javascript and passing all the related data to the

client side. Another issue emerges when data set becomes complicated. As the purpose of graphing is to

make data intuitive, complex figure should be avoided. While in our case, the complicated data sets do

yield complex figures, which limit the intuition we desire to build.

For the reasons above, we integrate Highcharts, a javascript lib, into Gratia-Web, to visualize data in a

more interactive way. In addition to Tooptip, Highcharts provide many fancy features including clickable

legends and zoomablility. It also alleviate the burden on server and network since data is now processed

in the client browser.

IV. Feed Nagios with Gratia RSV Metrics

Nagios and RSV(Resource and Service Validation) are two powerful open source monitoring systems

nowadays.

RSV is developed by the VDT(Virtual Data Toolkit) team, which is mainly committed to the simple

deployment, maintenance, and usage of OSG(Open Source Grid) software. Although the latest OSG is

now using RPM for distribution, RSV still serves as the recommended monitoring infrastructure for any

OSG site admin.

Unlike that RSV finds favors mostly from OSG, Nagios gains more popularity among enterprises as a

commercial product and full-fledged monitoring solution. It therefore has a larger community and more

company users including Yahoo!, McAfee, and DHL.

In the rest of this post, we brief how to push RSV probe’s result to a remote Nagios monitor. The

installation and configuration are well documented. While the document for connecting these two

systems is somewhat outdated. So this post is largely an effort to update this part of knowledge. Notice

that we adopt RSV 3.7 and Nagios 3.4.1.

1. Install RSV

It is easy to install RSV from RPM.

2. Install Nagios
Let’s follow the tutorial for Fedora. Since the tutorial starts with tarball, It works for most Linux

Distribution. Notice that Nagios can be installed on a host different from the host for RSV. In addition,

the Nagios user nagiosadmin created in this step will be referenced soon.

3. Configure RSV Host for Nagios
First make sure that RSV sends records to Nagios. A consumer process, nagios-consumer, is launched for

this routine. There are several things worth to mention:

• There is no need to add “—send-nsca”. And this component will not come with the default

setting, and adding this option would cause some silent errors.

• Your rsv-nagios.conf will look like

It implies that RSV will send the probe records to cmd.cgi. You will need to make sure the cgi is

reachable on Nagios host. Also, nagiosadmin is the user created in last section.

• Check nagios-consumer.output and nagios-consumer.err under /var/log/rsv/consumers for

any possible errors. If RSV is sending records to Nagios host, the nagios-consumer.output would

look like:

4. Configure Nagios Host to receive RSV Records
Nagios uses a simple template language to define host, command, service, and many other objects. An

object appears as a collection of directives. An example for a host object is:

define host{

 use generic-host ; Inherit from a template

 host_name remotehost

 alias Some Remote Host

 address 192.168.1.50

 hostgroups allhosts

 }

Where define follows the object type, and each line within the define scope is a directive. There are two

special directives:

host_name: specify the ID of the host object. The object can be referenced by other objects using this ID.

Also, the keyword in this ID declaration depends on the corresponding object types. For instance,

host_name for host object; service_name for service object; command_name for command object. Or

in general, ${OBJ_TYPE}_name for ${OBJ_TYPE} object.

use: it follows the name of a template. The object will then include all the directives within the template.

Directives in the object itself having a higher priority, so they will overwrite the template’s directives

were the keyword the same (e.g. address, hostgroups).

define service {

 name rsv-probe ; Template name

 use generic-service ; Inherit from another template

 active_checks_enabled 0

 check_freshness 1

 register 0

 }

Above is an example of template in Nagios. A template is almost identical to other objects except:

• Its ID declaration uses only name as the keyword, no matter what is the define type.

• It has a special directive register 0, which informs the system not to register itself as an object

Objects and Templates are generally defined in .cfg files. If you add your own .cfg file, you will need to

declare it in nagios.cfg before nagios launch.

With the above introduction, we can then start to configure Nagios for RSV:

1) Add rsv.cfg and modify nagios.cfg. Probably need to remove the rsv member in the contact

group, or create a rsv Nagios user on the Nagios Host.

2) Add rsv_service.cfg

On the RSV host, if /etc/rsv is:

The conf files ${host}.conf implies that ${host} is currently monitored by RSV. For example, if-gridftp-

argoneut.fnal.gov.conf implies the RSV host is collecting info form site if-gridftp-argoneut.fnal.gov. And

the if-gridftp-argoneut.fnal.gov.conf defines the info to collect

[if-gridftp-argoneut.fnal.gov]

org.osg.general.ping-host = 1

org.osg.globus.gridftp-simple = 1

Which is two metrics, org.osg.general.ping-host and org.osg.globus.gridftp-simple. By the configuration

in last section, all the metrics in all the conf files will be sent to the specified Nagios system.

Therefore, we need to define corresponding services on Nagios host. To figure out what the definition

looks like, we can first take a look at /var/log/httpd/access_log on Nagios host. If the RSV host is

configured correctly, we will see the record below every several minuets:

127.0.0.1 - - [28/Jun/2012:14:31:03 -0500] "

GET / HTTP/1.0" 200 14 "-" "check_http/v1.4.15 (nagios-plugins 1.4.15)"

****** - - [28/Jun/2012:14:31:29 -0500] "

 GET /nagios/cgi-bin/cmd.cgi?

 cmd_typ=30&

 cmd_mod=2&

 service=org.osg.general.ping-host&

 host=if-gridftp-nova.fnal.gov&

 plugin_state=0&

 plugin_output=Host%2Bif-gridftp-

nova.fnal.gov%2Bis%2Balive%2Band%2Bresponding%2Bto%2Bpings.&

 btnSubmit=Commited HTTP/1.1"

401 491 "-" "Python-urllib/2.4"

In the record, we notice that host is the site appeared in /etc/rsv; and service is the metric found in

${host}.conf. This observation inspires us to write rsv_services.cfg as below.

Note that the service_description must be the name of the metrics, and host_name need to match

${host}.conf in /etc/rsv.

3) verify nagios.cfg and restart the service

V. Automated Software Deployment on FermiCloud
The backbone of FermiCloud, OpenNebula 3.2, provides a sizable group of command line tools that ease

the use and management of our cloud system. While we also notice the absence of large scale

deployment tools in current OpenNebula distribution. We therefore propose a set of command line

tools that could perform automated software deployment based on pre-cooked images. The target of

these tools is to facilitate the management of virtual clusters, hence we name the entry command

onecluster. There are three types of commands in our toolkit:

1. onecluster
The entry commnad of our toolkit performs general operations like

• launch and configure a virtual cluster of certain type

• shutdown a virtual cluster

• add or remove resources from a virtual cluster without breaking the state consistency of

distributed software running upon (incomplete)

• monitor cluster state (incomplete)

In our design, onecluster is unaware of the detailed knowledge of software stack. Its only assumption is

that the virtual cluster is a collection of virtual machines connected by (virtual) network, hence it could

use general OpenNebula tools to perform vm operations or collect information. The usage convention of

onecluster is:

onecluster <command> -t Type –n ClusterName –f Conf

Where

command is the operation we are going to take. Two operations are available for now, create and

shutdown.

Type specifies the script we are going to use for image instantiation and cluster configuration. The

corresponding script name is one${Type}Cluster.

ClusterName is the unique ID for the entire cluster to store and fetch cluster states.

Conf is the configuration file taken by onecluster and one${Type}Cluster. It defines both general

configuration and cluster type specific configurations.

#[general configuration]

CONF_FUNC=Hadoop; #Configuration Function

CLUSTER_INFO_PATH=`dirname $0`;

USER=root;

#[type specific configuration]

TID=11; #TEMPLATE ID

HADOOP_HOME=/home/hadoop/etc/hadoop-1.0.3;

XPATH=/cloud/login/siyuan/exec/bin/orc-xonf.py;

HADOOP_TMP_DIR=/home/hadoop/storage;

SNUM=1;

Within the above configuration, CONF_FUNC specifies function to execute in one${Type}Cluster;

CLUSTER_INFO_PATH gives path to store cluster information; TID is the template ID used to instantiate

vm instances; SNUM represents the number of slave nodes to launch in a Hadoop cluster.

2. one${Type}Cluster
For each type of cluster, configuration procedures vary from case to case, while they can generally be

decomposed into four steps:

• Collect global information like IP addresses of VMs

• Configure each VM with the information collected

• Execute local configuration script on each VM

• Start software in accordance to the requirement of distributed software stack

For example, oneHadoopCluster would launch a Hadoop cluster in following steps:

• Collect all VM IP addresses

• Generate masters and slaves file for all VM instances by collected IP addresses; modify

configuration files in each VM for current master node

• Format NameNode; set up storage space for each VM

• Start all hadoop processes

3. Utilities
Utilities are tools for special configuration purpose, like changing an xml configuration file. Since such

modification has a strong dependency on the chosen software stack, such utility may not be designed

for general purpose. During deployment, utility will be first copied to the local storage of each VM, and

then get executed.

In the case above, XPATH specifies a utility to update Hadoop configuration files.

4. Future Work
One important concern is fault tolerance. As cloud scales up and software stack complexity increases,

faults and errors will become inevitable during deployment. Admittedly, it is always a solution to delete

all VM instances and to redo the deployment. The cost of such recovery is simply unaffordable when

hundreds or thousands of instances involved. Therefore, we need a mechanism to

• Detect faults and errors immediately

• Perform small step undo when possible

• Perform small step redo when possible

• Guarantee Final Consistency (software stack is consistent at final stage)

Our primitive idea is to break each deployment into READ, UPDATE, LOCAL-UPDATE operations and

cluster, local vm STATEs.

• READ fetch information from all VM instances

• UPDATE push the processed information fetched by READ to all VMs

• LOCAL-UPDATE do not need any information from remote VMs. We distinguish UPDATE and

LOCAL-UPDATE for their complexity and cost differences in regard to undo and redo.

• local vm STATE describes the state of one vm in the deployment procedure. It can be affected

by UPDATE or LOCAL-UPDATE

• cluster STATE is the collection of all vm STATEs. A cluster STATE is final consistent if it can still

progress to the consistent final stage in current deployment.

To detect faults and errors, each definition of STATE needs to come with a check script; to perform undo,

each UPDATE operation must accompany with a reverse operation; it is simple to redo a LOCAL-UPDATE.

VI. Acknowledgement
Special thanks are given to Steven Timm, Tanya Levshina, Gabriele Garzoglio, Hyunwoo Kim, and all the

other colleagues I have been working with in the fermilab. Your care and help are important to me, and

also make fermilab a very pleasing place for work.

